
EC Protocol Bridge Developer Guide
Release 2.5

Industrial Solutions DivisionInternet of Things Group 2

Contents

§Overview and High-level Architecture

§ Plug-in Technical Overview

§ Plug-in Data Inputs & Outputs

§Data Exchange Examples

§ Plug-in Development

§ Sample Plug-in Code

Industrial Solutions DivisionInternet of Things Group 3

Overview and High-level Architecture

Industrial Solutions DivisionInternet of Things Group 4

Protocol Bridge Overview

The purpose of the Protocol Bridge is to provide a real-time, deterministic data pipeline. Data
is typically input from a source having a particular data protocol and output to destination
having a different data protocol. For instance, the data may be input from an OPC UA server
and output as an MQTT publication.

The Protocol Bridge application used a plug-in design. Its Manager provides a framework
which dynamically loads and configures plug-in modules. These plug-ins extend the base
functionality of the application. Typically, each plug-in provides capabilities for a particular
data protocol. For instance, one plug-in provides OPC UA, another provides MQTT, and so on.
Since plug-ins are specifically designed to exchange data with each other, transformation of
data from one protocol to another is very simple and efficient.

The behavior of the Protocol Bridge is controlled by a configuration file. It is not necessary for
an end-user to write any code. When executing the application, the name of a configuration
file is provided as a command-line argument, ex. ec-bridge config.yaml. The configuration file
specifies which plug-ins are loaded, the runtime parameters for each, and how data is routed
from “broadcast” plug-ins to “listener” plug-ins. Multiple configuration files may be created
for different use cases.

Industrial Solutions DivisionInternet of Things Group 5

ECI Protocol Bridge (software suite)

EC-Server

EC-Server
Application

EC-Bridge

Plug-Ins (Linux Shared Libraries)

OPC UA
Server

OPC UA Shared
Memory

Client

PubSub

EC-Bridge
Application

MQTT ROS2 (WIP)

ECI-EII
Bridge Data Sim

Fieldbus
device,

application,
and any data
source that
supports a

plug-in
protocol

plug-ins can freely exchange data with each other via in-process memory

Protocol Bridge Architecture Overview

future...

Config File
Config File

Industrial Solutions DivisionInternet of Things Group 6

EC-Bridge Architecture Detail

EC-Bridge
Configures & Orchestrates Plug-Ins

Plug-in

Broadcaster

Fieldbus
Device

plug-in data
exchange

Plug-in

Listener

Plug-in

Listener

Plug-in

Listener[s]

- Supported data protocols implemented as plug-ins
- Data flows defined via configuration file
- Zero-code implementation for end-user
- Multi-threaded, deterministic, soft real-time data exchange

Supported
data protocol
source / app

Fieldbus
Device

Supported
data protocol
source / app

Industrial Solutions DivisionInternet of Things Group 7

Comms between Instances or Containers

Single Compute Node

Instance or Container 2Instance or Container 1

Data exchange protocol
such as OPCUA, MQTT, etc.

Industrial Solutions DivisionInternet of Things Group 8

Comms between Compute Nodes/Devices

Multiple Compute Nodes

Compute Node 2Compute Node 1

Data exchange protocol
such as OPCUA, MQTT, etc.

Industrial Solutions DivisionInternet of Things Group 9

Plug-in Technical Overview

Industrial Solutions DivisionInternet of Things Group 10

Developing a Plug-in Overview
At a high-level, developing a Protocol Bridge plug-in includes the following steps:

§ Design the plug-in to adapt its execution dynamically at runtime from parameters received from a configuration file.
§ Design its execution to perform well in a real-time, multi-threaded environment.
§ Design the code to follow the API callback lifecycle:
• plg_initialize()

• Read in and parse the configuration parameters supplied to this function from a specified configuration file.
• Validate the parameters are correct individually and make sense collectively together. If not return an error code to prevent further execution.
• Dynamically configure the plug-in based upon these parameters, allocating resources as needed.

• plg_start()
• Allocate any remaining resources that are needed, establish any necessary connections, etc.
• Launch a real-time thread that will input data externally from a data source. That may include for instance reading from a server or subscribing to a

service. Broadcast that data, using functions supplied by the framework, to make it available to other plug-ins to consume.
• Launch a real-time thread to listen for data being received from other plug-ins, using functions supplied by the framework to read and parsed it,

and output it externally. That may include for instance writing to a server or publishing to a service.
• Launch any other required threads and begin processing until informed by the framework to stop execution.

• plg_stop()
• Stop all processes that were launched in plg_start() and release resources and connections.

• plg_terminate()
• Final cleanup of any remaining resources and prepare for termination of plug-in execution.

§ Create one or more configuration files for thoroughly testing the plug-in. Validate that data is input and output from
external sources as expected, is properly exchanged with other plug-ins and meets all performance benchmarks.

Industrial Solutions DivisionInternet of Things Group 11

Datasets and Fields
A Dataset, along with the Fields it contains, define a fundamental unit of data for all ingest, export and
exchange operations. Each field within a dataset is given a unique identifier and a defined datatype. The
number of fields and their position within a Dataset is fixed. Data is ingested and exported in this order as
well as packed into internal Data Buffers for exchange from on Plug-in to another. This uniformity form a
“contract” that every Plug-in can rely upon and what makes data exchange straight forward and easy to
configure.

The example below show a configuration file snippet that contains the definition of a dataset, named ds1,
along with two data fields, a 32-bit integer and a float, named fld1 and fld2 respectively.

dataset:
-

dataset-id: ds1
dataset-fields:

-
datafld-id: fld1
datatype: int32

-
datafld-id: fld2
datatype: float

Industrial Solutions DivisionInternet of Things Group 12

Config file to exchange data between two plug-ins

Listen and receive
the counter, and
display that field

value to the
console

Generate an
incrementing

counter field and
broadcast that
every 500ms

settings:
log-level: LOG_DEBUG

plugins:
-

plugin-id: plg-sim
filename: libplgsim.so
dataset:

-
dataset-id: sim-ds
dataset-fields:

-
datafld-id: counter
datatype: int32

configuration:
interval-us: 500000

-
plugin-id: plg-sim2
filename: libplgsim.so
dataset:

-
dataset-id: sim-ds2
listener-dataset-id: sim-ds

configuration:

Sim Plug-in 1 Sim Plug-in 2

Notes:
• For details of available configuration parameters for each plug-in, please reference

the main ECI documentation, section → Components and Features of ECI →
Industrial Protocols & Bridging Communication → Edge-Control Protocol Bridge

• For information on other sample configuration files, please reference the main ECI
documentation, section → Components and Features of ECI → Industrial Protocols &
Bridging Communication → EC Protocol Bridge Example Configurations

Industrial Solutions DivisionInternet of Things Group 13

Plug-in Deterministic Data Exchange

Plug-in Plug-in

Broadcast
RT Thread Listener RT Thread

blocking read awakes
and memcpy data

queue data in ring buffer and
wakes read thread of listeners

• Package data into a data buffer
• Store data pointer to plug-in’s ring queue
• Unblock read thread of listeners
• Data in ring buffer is freed as overwritten

and any data loss logged

• Copy data buffer from broadcast’s queue
• Decrement broadcast’s queue listener count
• Unpackage and process data buffer

queue access controlled via pthread mutex

A plug-in shares data with another by packaging that data into data buffer, queueing it and then signaling each
listener plug-in that data is available by unblocking its read thread. That data is received, a local copy is made,
and it’s then unpackaged and processed. On a properly tuned preempt-RT platform the latency and jitter
numbers for this data exchange are predictable but will vary based on many factors and can be as low as 5μs.

Industrial Solutions DivisionInternet of Things Group 14

Data Buffer Packaging/Unpackaging Details

...header

create_databuf()

loop:
add_databuf_variant()

optional:
add_databuf_row()

write_databuf()

DataBuffer

read_databuf()

thread is unblocked

loop:

field_to_variant()

next_databuf_field()

Industrial Solutions DivisionInternet of Things Group 15

Determinism Configuration Parameters

dx-core-affinity: This parameter represents the CPU core to assign to the real-time blocking read thread
for the listener. Some plug-ins also use this value for their real-time broadcast thread. Plug-ins are free to
define their own related parameters as well such as cli-core-affinity used by OPC UA.

dx-sched-priority: This parameter represents the priority assign to the real-time blocking read thread
for the listener. Some plug-ins also use this value for their real-time broadcast thread. Plug-ins are free to
define their own related parameters as well such as cli-sched-priority used by OPC UA.

sync-start-delay-ms: This parameter is used to synchronize the timing loop for plug-ins by providing a
single clock which can be used to synchronize processing. Participating plug-ins will wait until this delay
expires until beginning their processing.

sync-start-offset-ms: This parameter is used by participating plug-ins and represents the offset in
milliseconds from the synchronized start delay clock. Plug-ins are free to define their own related
parameters as well such as svr-sync-start-offset-ms, pub-sync-start-offset-ms and sub-sync-start-
offset-ms used by OPC UA.

Industrial Solutions DivisionInternet of Things Group 16

Plug-in Data Inputs & Outputs

Industrial Solutions DivisionInternet of Things Group 17

All Possible Data Inputs and Outputs for a Plug-in

Broadcast

PublishRead

Subscribe Write

Listen

Plug-inInputs Outputs

Industrial Solutions DivisionInternet of Things Group 18

I/O for Data Simulator Plug-in

Generate
Data

Display
Data

BroadcastListen

Plug-inInputs Outputs

queue

Industrial Solutions DivisionInternet of Things Group 19

I/O for MQTT Plug-in

Listen

Publish

Plug-inInputs Outputs

Subscribe

Broadcast
queue

Industrial Solutions DivisionInternet of Things Group 20

I/O for Shared Memory Plug-in

Broadcast

Read

Write

Listen

Plug-inInputs Outputs

queue

Industrial Solutions DivisionInternet of Things Group 21

I/O for EMB Plug-in

Listen

Publish

Plug-inInputs Outputs

Subscribe

Broadcast
queue

Industrial Solutions DivisionInternet of Things Group 22

I/O for OPC UA Plug-in

write
queue

publish
queue

bcast
queue

Broadcast

PublishRead

Subscribe Write

Listen

Plug-inInputs Outputs

Industrial Solutions DivisionInternet of Things Group 23

Data Exchange Examples

Industrial Solutions DivisionInternet of Things Group 24

Example for Codesys to EII Timeseries DB

EII Msg
Bus

EMB
Plug-in

OPC UA
Plug-in

ECI Protocol Bridge EII Timeseries DB

InfluxDB Grafana
ZMQ Publish

Industrial Solutions DivisionInternet of Things Group 25

Example for Codesys to Shared Memory

Shared Memory
Plug-in

OPC UA
Plug-in

Share
Memory

Application

Industrial Solutions DivisionInternet of Things Group 26

Example for OPC UA Client/Server with PubSub and MQTT

MQTT
Publish

OPC UA
Subscribe

OPC UA
Server

MQTT
Subscriber

Data Sim
Plug-in

OPC UA
Client Write

OPC UA
Client Read
& Publish

Industrial Solutions DivisionInternet of Things Group 27

Plug-in Development

Industrial Solutions DivisionInternet of Things Group 28

Development BKMs

Developers should keep the following BKMs in mind when developing Plug-ins:

• It is mandatory that all API callbacks be implemented, and all version information variables be specified,
otherwise the shared library will not be recognized as a plug-in and will not be loaded.

• It is critical to understand that a plug-in is a Linux dynamic shared library. The plug-in code itself, as well as
all 3rd party libraries that it utilizes, must run properly in this context. This means that it’s designed to be
fully reentrant and thread-safe, as well as not making calls to any static libraries.

• A plug-in must return as quickly as possible from all calls to its standard API functions. It should spawn
additional worker threads as necessary to perform ongoing processing.

• A plug-in must set a return code in all calls to its standard API functions to notify the framework whether
execution was successful or not.

• Use valgrind, or equivalent tool, at every step of the way during development. It can be exceeding difficult
to track down and resolve memory leak issues, especially in a multithreaded dynamic share library
environment. It is critical that all memory issues be cleaned up immediately and not delay resolving issues
until later.

• Remember that plug-ins should be real-time and deterministic, so code must be as quick and efficient as
possible.

• Generously use logging throughout the code for easier debug and use logging level to control runtime
output.

Industrial Solutions DivisionInternet of Things Group 29

API Callback Functions

plg_initialize() equivalent to an object constructor

plg_connect() deprecated – move existing code to plg_initialize() or plg_start()

plg_start() begin the process loop

plg_listener() deprecated – replaced by a RT blocking read thread

plg_stop() stop the process loop

plg_disconnect() deprecated – move existing code to plg_terminate() or plg_stop()

plg_terminate() equivalent to an object destructor

Industrial Solutions DivisionInternet of Things Group 30

plg_initialize

The initialize API method provides the plug-in the opportunity to allocate
resources and configure itself.
This method, along with all others, is launch in its own thread, and receives
a context parameter that is managed by the framework. It receives all
configuration info that was specified in the config file. Although not
required, it’s strongly suggested that the plug-in use this method to parse
its configuration information into local structs to make accessing that
information easier, and to also allocate memory for resources that will be
used during its operation.
The plug-in should use the context parameter to store its heap-type data.
The use of source-level and static variables must be avoided to ensure
that it is fully reentrant and thread-safe.
This method, like all others, should set a return value so that the
framework knows whether it has properly executed or not.

plg_initialize

plg_connect

plg_start

plg_listener

plg_stop

plg_disconnect

plg_terminate

Industrial Solutions DivisionInternet of Things Group 31

plg_connect

deprecated

move any existing code to either plg_initialize() or plg_start()

plg_initialize

plg_connect

plg_start

plg_listener

plg_stop

plg_disconnect

plg_terminate

Industrial Solutions DivisionInternet of Things Group 32

plg_start

The start method provides the opportunity for the plug-in to start up its
asynchronous process thread[s] and enter its processing loop.
At a minimum, a plug-in should spawn a real-time blocking read thread that
listens for data being sent from other plug-ins. These details are described at
the end of this API section.
A plug-in should spawn threads necessary to ingest and export data to external
applications and data sources. The specifics of the data protocol determines
those reads and writes and/or publish and subscribe methods that are needed.
The processing loop continues to run until a variable flag, that is set by the
stop() method, indicates that it should terminate.

while execute = true
processing ...

plg_initialize

plg_connect

plg_start

plg_listener

plg_stop

plg_disconnect

plg_terminate

Industrial Solutions DivisionInternet of Things Group 33

plg_listener

deprecated

replaced by a real-time blocking read thread that is
described in more detail at the end of this API section

plg_initialize

plg_connect

plg_start

plg_listener

plg_stop

plg_disconnect

plg_terminate

Industrial Solutions DivisionInternet of Things Group 34

plg_stop

The stop method provides the opportunity for the plug-in to terminate the
processing loop.
Typically, the plug-in will simply set a variable to signal the process loop
(launched in the start method) that it should end.
example:

execute = false // stop process loop

while execute = true
processing ...

plg_initialize

plg_connect

plg_start

plg_listener

plg_stop

plg_disconnect

plg_terminate

Industrial Solutions DivisionInternet of Things Group 35

plg_disconnect

deprecated

move any existing code to either plg_terminate() or plg_stop()

plg_initialize

plg_connect

plg_start

plg_listener

plg_stop

plg_disconnect

plg_terminate

Industrial Solutions DivisionInternet of Things Group 36

plg_terminate

The terminate method provides the opportunity for the plug-in to release
all resources that have been allocated and perform all other clean up that
is necessary before it is terminated by the framework.
Use valgrind, or equivalent tool, to ensure that all memory allocations have
been freed.

plg_initialize

plg_connect

plg_start

plg_listener

plg_stop

plg_disconnect

plg_terminate

Industrial Solutions DivisionInternet of Things Group 37

Sample Plug-in Code

Industrial Solutions DivisionInternet of Things Group 38

Sample Plug-in header file

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <unistd.h>
#include ”plgshared.h"

// Version Information
char VI_NAME[] = "Test Plug-in";
char VI_DESCRIPTION[] = "This is the sample test plug-in";
int VI_MAJOR = 0;
int VI_MINOR = 9;
int VI_BUILD = 0;
int VI_YEAR = 2020;
int VI_MONTH = 10;
int VI_DAY = 14;

void plg_initialize(InitParam *);
void plg_start(Plugin *);
void plg_stop(Plugin *);
void plg_terminate(Plugin *);

Industrial Solutions DivisionInternet of Things Group 39

Sample Plug-in source code

#include "plugin.h"

// Convenience macros
#define PLG_LOGE(fmt, ...) (writelog)(LOG_ERROR, __FILE__, fmt, ##__VA_ARGS__)
#define PLG_LOGW(fmt, ...) (writelog)(LOG_WARNING, __FILE__, fmt, ##__VA_ARGS__)
#define PLG_LOGI(fmt, ...) (writelog)(LOG_INFO, __FILE__, fmt, ##__VA_ARGS__)
#define PLG_LOGD(fmt, ...) (writelog)(LOG_DEBUG, __FILE__, fmt, ##__VA_ARGS__)
#define PLG_LOGT(fmt, ...) (writelog)(LOG_TRACE, __FILE__, fmt, ##__VA_ARGS__)
#define PLG_LOGV(fmt, ...) (writelog)(LOG_VERBOSE, __FILE__, fmt, ##__VA_ARGS__)

typedef struct Vars {
PlgFnc *fnc;
bool running;
uint8_t dx_core_affinity;
uint8_t dx_sched_priority;

} Vars;

static void (*writelog)(enum LOG_LEVEL, const char*, const char*, ...); // Convenience function

Industrial Solutions DivisionInternet of Things Group 40

plg_initialize() callback
/*
* Called by the plug-in framework first to launch and configure the plug-in
*/

void plg_initialize(InitParam *param) {
PLG_LOGT("%s() called for, %s\n", __func__, VI_NAME);
writelog = param->plg_fnc->writelog;

Vars *vars = malloc(sizeof(Vars));
vars->fnc = param->plg_fnc;
vars->running = true;
vars->dx_core_affinity = 1;
vars->dx_sched_priority = 60;
param->self->vars = vars;

Configuration *cfg;
DL_FOREACH(param->self->configuration, cfg) {

if (cfg->level == 0 && strcasecmp(cfg->key, "dx-core-affinity") == 0) {
vars->dx_core_affinity = atoi(cfg->val);

} else if (cfg->level == 0 && strcasecmp(cfg->key, "dx-sched-priority") == 0) {
vars->dx_sched_priority = atoi(cfg->val);

}
}
*param->self->thrd_rtn = PLG_SUCCESS;

}

Industrial Solutions DivisionInternet of Things Group 41

plg_start() callback
/*
* Called by the plug-in framework after initialize to start the process loop
*/

void plg_start(Plugin *self) {
PLG_LOGT("%s() called for, %s\n", __func__, VI_NAME);

Vars *vars = (Vars*)self->vars;
PLG_RC thrd_rtn = PLG_SUCCESS;

// Launch the listener thread which runs until plug-in is shutdown
pthread_t thread = vars->fnc->create_rt_thread(vars->dx_sched_priority, vars->dx_core_affinity,

plg_listener, ”MyListener", self);

if (thread == 0) {
thrd_rtn = PLG_ERROR_THREAD;

} else {
// Wait for thread to end
pthread_join(thread, NULL);

}

self->thrd_rtn = thrd_rtn;
}

Industrial Solutions DivisionInternet of Things Group 42

Sample Listener Thread function
static void* plg_listener(void *arg) { // Fnc must match name specified when created (ex. plg_listener)

Plugin *self = (Plugin*) arg;
Vars *vars = (Vars*) self->vars;
DataBuffer *databuf_recv = NULL;

while (vars->running) { // Loop until plug-in is stopped
vars->fnc->read_databuf(self, false, true, &databuf); // Receive data (blocking read)
if (!databuf_recv) continue; // Check that valid data buffer was received
uint8_t *buf_fld = databuf_recv->buffer; // Set pointer to the first field in the data buffer

DataField *datafld;
DL_FOREACH((*(Dataset**)databuf->dataset)->dataflds, datafld) { // Foreach data buffer field

if (!buf_fld) break;

Variant var;
vars->fnc->field_to_variant(datafld, buf_fld, &var);

// This example simply outputs the data field to the console. An actual implementation would process the data.
eci_display_variant(datafld->datafld_id, &var);

buf_fld = vars->fnc->next_databuf_field(buf_fld);
}
free(databuf_recv);

}
return NULL;

}

Industrial Solutions DivisionInternet of Things Group 43

plg_stop() callback
/*
* Called by the plug-in framework first when shutting down to stop the process loop
*/

void plg_stop(Plugin *self) {
PLG_LOGT("%s() called for, %s\n", __func__, VI_NAME);

Vars *vars = (Vars*)self->vars;
vars->running = false;

*self->thrd_rtn = PLG_SUCCESS;
}

Industrial Solutions DivisionInternet of Things Group 44

plg_terminate() callback
/*
* Called by the plug-in framework when terminating the plug-in
*/

void plg_terminate(Plugin *self) {
PLG_LOGT("%s() called for, %s\n", __func__, VI_NAME);

free(self->vars);

*self->thrd_rtn = PLG_SUCCESS;
}

Industrial Solutions DivisionInternet of Things Group 45

InitParam data struct param passed to plg_initialize()

InitParam

Plugin* self
PlgFnc* plg_fnc

PlgFnc

<see source code for a complete
list of ec-bridge manager
functions available to plug-ins>

plg_initialize()

plg_start()
plg_stop()
plg_terminate()

Plugin

<see next slide for details>

Industrial Solutions DivisionInternet of Things Group 46

Plugin data struct param passed to most API callbacks

Plugin

char* plugin_id
uint8_t plugin_nbr
void* vars
int thrd_rtn
Dataset* dataset
Configuration* configuration
RingQueue dx_ring_queue
void* handle
char* filename
PlgInfo* plg_info
pthread_t thread
enum PLUGIN_STATE state

PlgInfo

uint32_t plugin_version
char* name
char* description
uint32_t version_major
uint32_t version_minor
uint32_t version_build
time_t timestamp
void (*initialize)(InitParam*)
void (*start)(PluginContext*)
void (*stop)(PluginContext*)
void (*terminate)(PluginContext*)

Dataset

char* dataset_id
uint8_t dataset_nbr
DataField* dataflds
uint8_t listener_count
char* listener_dataset_id
uint8_t listener_dataset_nbr
Plugin* plugin

Configuration

uint32_t seq_nbr
uint32_t level
uint32_t list_ndx
uint32_t parent
char* key
char* val

DataField

char* datafld_id
enum DATA_TYPE datatype
uint32_t length
Dataset* dataset

RingQueue

UT_ringbuffer* rbuf
pthread_cond_t condition_queue
pthread_mutex_t mutex_queue
int packet_counter
int write_started
unsigned int popped_count
UT_icd dbx_icd

47

